Giovanni Di Giorgio

THEORY
OF HELICOPTER FLIGHT

AERODYNAMICS, FLIGHT MECHANICS
Giovanni Di Giorgio

Theory of helicopter flight

Aerodynamics, flight mechanics
Contents

Preface 13
Units 15
Notation 17
Abbreviations 23

Chapter 1 Helicopter configurations
1.1. The helicopter and the vertical flight 25
1.2. Helicopter configurations 26
1.3. The rotor and the flight controls 29
 1.3.1. Fundamental types of rotor 29
 1.3.2. The flight controls and the swashplate mechanism 32

Chapter 2 Rotor aerodynamics, hovering and vertical flight
2.1. Introduction 39
2.2. Momentum Theory 39
 2.2.1. Vertical climb 40
 2.2.2. Hovering flight 43
 2.2.3. Vertical descent 46
 2.2.4. Curves of induced velocity in vertical flight 48
2.3. Blade Element Theory 49
 2.3.1. Rotor thrust and torque, power required 52
 2.3.2. Linear twist of rotor blade 57
 2.3.3. Non-uniform induced velocity 58
 2.3.4. Rotor blade, root and tip losses 61
 2.3.5. Figure of merit 62
 2.3.6. Procedure for approximate and preliminary
calculation of the aerodynamic parameters,
blade loads, rotor power required 63
2.4. The ground effect 69
2.5. Introduction to Vortex Theory 71
 2.5.1. Dynamics of ideal fluid 72
 2.5.2. Fundamental relationships applied to the rotor 76
 2.5.2.1. Kutta-Joukowsky’s theorem application 77
Chapter 3 Rotor dynamics
3.1. Introduction 87
3.2. Fundamental axes and planes 87
3.3. The flapping motion of the blade 90
3.4. Flapping hinge offset and control moments 93
3.5. The rotor in forward flight and the blade flapping 98
3.6. The lagging motion of the blade 99
3.7. The cyclic feathering 101
3.8. Coupling of fundamental motions of the rotor blade 103
3.9. Calculation of centrifugal force along the blade 106

Chapter 4 Rotor aerodynamics, forward flight
4.1. Introduction 109
4.2. Momentum Theory 109
4.3. Blade Element Theory 113
4.3.1. Parameters for determination of blade angle of attack 113
4.3.2. Blade element and local incidence 118
4.3.3. Aerodynamic forces acting on the rotor, closed form equations 120
4.3.3.1. Calculation of the thrust 123
4.3.3.2. Rotor coning and flapping coefficients 127
4.3.3.3. Calculation of the drag 131
4.3.3.4. Calculation of the torque 135
4.4. Reverse flow region 138
4.5. Forces and parameters related to tip path plane and to hub plane 139
4.5.1. Equations referred to the tip path plane 139
4.5.2. Equations referred to the hub plane 141
4.6. Helicopter in trim and rotor aerodynamics 144
4.7. Corrections of results of Blade Element Theory 148
4.8. Blade element theory limitations 149
4.9. Stall and compressibility phenomena 150
4.9.1. Swept blade tip and local Mach number 155
4.10. Rotor wake models in forward flight 156
4.11. Computational aerodynamics, advanced methodologies, multidisciplinary approach 158

Chapter 5 Helicopter trim analysis
5.1. Introduction 161
5.2. Systems of axes 162
5.3. General equations of motion of helicopter 164
5.4. Helicopter trim conditions 168
 5.4.1. The general trim analysis 169
5.5. The rotor-fuselage system and the torque reaction 171
5.6. Simplified development of equilibrium (trim) 173
 5.6.1. Trim equations in forward flight 173
 5.6.2. The expression for power in forward level flight 179
5.7. Approximate and quick estimation of longitudinal equilibrium 181
5.8. General trim solution 185
5.9. Autorotation 195
 5.9.1. Autorotation of a rotor 195
 5.9.1.1. Aerodynamics of autorotation 195
 5.9.1.2. Final phase of an autorotation 197
5.9.2. Limitations in autorotation and Height-Velocity Diagram 198
 5.9.3. Final notes 200

Chapter 6 Helicopter flight performance
6.1. Introduction 201
6.2. Total power required 201
6.3. Standard atmosphere 202
6.4. The engine and the power available 205
 6.4.1. The operating condition of the main rotor 205
 6.4.2. Configuration of free shaft turbine engine 206
 6.4.3. Rotor/transmission/engine system 208
 6.4.4. Performance of installed engine and power ratings 209
6.5. Hover performance 212
 6.5.1. Power required P_{MR} and P_{tr} in hovering flight 212
 6.5.2. Vertical drag of the helicopter 213
 6.5.3. Maximum hover ceiling 214
6.6. Performance in vertical climb 215
6.7. Performance in forward level flight 216
 6.7.1. Power required P_{MR} and P_{tr} 216
6.7.1.1. The parasitic drag D_f in forward level flight 219
6.7.2. The total power required in level flight 221
6.7.2.1. Maximum speed in level flight 225
6.7.2.2. Maximum endurance and maximum range 226
6.7.2.3. Power increments due to stall and compressibility 228

6.8. Forward climb and descent performance 229
6.8.1. Power required P_{MR} in forward climb 229
6.8.2. Rates and angles of climb, ceiling altitude 230
6.8.3. Power required P_{MR} in forward descent 234

6.9. Autorotative performance 234

6.10. Introduction to mission analysis 237
6.10.1. Take-off and landing weight 237
6.10.2. An approach to helicopter mission analysis 238

Chapter 7 Stability and control, introduction to helicopter flight dynamics
7.1. Introduction 241
7.2. The single-degree of freedom dynamic system 242
7.3. Helicopter static stability and dynamic stability 250
7.4. Helicopter static stability 251
7.4.1. Stability following forward speed perturbation 251
7.4.2. Stability following vertical speed or incidence perturbation 251
7.4.3. Stability following yawing perturbation 252
7.5. Helicopter dynamic stability 252
7.5.1. Small disturbance theory 255
7.5.2. Stability derivatives 257
7.5.2.1. Force perturbation expressions and stability derivatives 259
7.5.2.2. Moment perturbation expressions and stability derivatives 260
7.5.3. Notes on the methodology of small perturbations 261
7.6. Dynamic stability in hovering flight 261
7.6.1. Longitudinal dynamic stability in hovering flight 261
7.6.1.1. Equations of motion, state variable form 263
7.6.1.2. Stability derivatives calculation, M_q and M_u in hover 267
7.6.1.3. Approximate calculation of longitudinal modes in hovering flight for a medium helicopter 268
7.6.1.4. The characteristic roots on complex plane 269
7.6.2. Lateral-directional dynamic stability in hovering 270
flight

Chapter 7 Dynamic stability in forward flight

7.7. Dynamic stability in forward flight 273

7.7.1. Longitudinal dynamic stability in forward flight 273

7.7.1.1. Approximate calculation of longitudinal modes in forward flight for a medium helicopter 276

7.7.2. Lateral-directional dynamic stability in forward flight 278

Chapter 8 Helicopter control

7.8. Helicopter control 282

7.8.1. Stability, control and flying qualities 282

7.8.2. Longitudinal control in hovering flight; one degree of freedom approach 283

7.8.3. Lateral-directional control in hovering flight; one degree of freedom approach 284

Chapter 8 Manoeuvres in horizontal and in vertical planes

8.1. Introduction 287

8.2. Steady turn 287

8.2.1. Notes on turn manoeuvres 289

8.2.2. Gyroscopic moments in turn 289

8.2.3. Power required in steady turn 290

8.3. Symmetrical pull-up 290

Chapter 9 Coaxial rotor and tandem rotor helicopter

9.1. Introduction 293

9.2. Coaxial rotor helicopter 293

9.2.1. Application of Momentum Theory to the hovering flight 293

9.2.2. General characteristics of the helicopter 296

9.2.3. Helicopter equilibrium about the body Z-axis 297

9.3. Tandem rotor helicopters 298

9.3.1. General description and definitions 298

9.3.2. Application of Momentum Theory and of Blade Element Theory to the hovering flight 300

9.3.3. Application of Momentum Theory to the level forward flight 303

9.3.4. Experimental data 305

9.3.5. Condition of longitudinal equilibrium of the helicopter 305

9.3.6. Notes on stability 308

9.3.6.1. Forward speed disturbance 308

9.3.6.2. Stick-fixed dynamic stability in hovering flight 309
Appendix A Definition of non-dimensional coefficients for the rotor 311
Appendix B International Standard Atmosphere, ISA 313
Appendix C Review of Laplace transform 315
Appendix D Orientation of the aircraft 317
Glossary 319
References 325
List of illustrations 331
Index 337
This book provides an introduction to helicopters through the fundamental theories and methods of rotor aerodynamics and flight mechanics. The arguments have been structured in order to provide the reader with the physical aspects of problems, the basic mathematical tools involved, the presentation of theories and methods with solved numerical examples or ready to be implemented on the computer. Therefore, the understanding of both the rotary-wing principles of flight and the approximate magnitude of parameters and variables involved is achieved through a clear and step by step practical presentation.

After Chapter 1, that treats the main helicopter configurations, Chapters 2, 3 and 4 review basic rotor aerodynamics applied to helicopters. They treat the momentum and blade element theories, with an introduction to the fundamentals of vortex theory and the elements of rotor dynamics. The developed methods are applied in the subsequent chapters to generate data for examples and to support the arguments. Chapters 5, 6, and 8 present the conditions of helicopter trim and manoeuvres and the flight performance prediction and evaluation. Chapter 7 develops the fundamental problems of helicopter stability and control by means of the mathematical tools provided by the modern control theory. Chapter 9 completes the treatment of theory of flight with specific elements for tandem and coaxial rotor helicopter configurations.

Therefore, this book may be used as a reference or a complementary textbook for students in aerospace engineering, and the material provides a starting point to prepare a more in depth analysis useful for both practicing engineers and professionals in helicopter technology.

This volume is my English translation with the addition of new arguments of my book Teoria del volo dell’elicottero in Italian, published in 2007 and 2009 in Italy by Aracne Editrice. During my translation, I included updates that have occurred over the last years. The Italian book has been used by numerous colleagues and professionals from whom I received positive feedback and appreciation.

In my professional experience I have verified the complexities of a rotary-wing aircraft since the early approach to the problems of vertical flight. Therefore, writing an introduction to this subject is a challenge.
Moreover, this book takes into account the multidisciplinary approach required by rotorcraft. Finally, I hope that the same enthusiasm, which has accompanied me from the beginning of my eighteen year career in rotary-wing, will be transferred to the reader through the pages of this volume.

I would like to thank Professor Gian Battista Garito and Ingegner Giovanni Fittipaldi for the significant discussions about the fundamentals of rotorcraft; moreover, since the first edition of the Italian book, they have given me helpful comments and many suggestions.

I am very grateful to Dottor Gianluca Grimaldi and to Ingegner Andrea Bianchi of Leonardo Helicopters Division (AgustaWestland, when I started to write the book) in Cascina Costa; they have always appreciated my efforts, providing me useful comments.

I would also like to thank Ingegner Massimo Longo of Leonardo Helicopters Division in Cascina Costa; he has allowed me to appreciate special topics in the field of helicopter flight test.

I am also very grateful to Professor Carlo de Nicola of University of Naples Federico II for stimulating many constructive discussions, from the aerodynamics to the aircraft pilot’s standpoint, and thanks are due to Professor Renato Tognaccini; over the last years, they have invited me to give an interesting series of conferences on helicopter flight performance in Naples.

I want to express my sincere gratitude to Professor Francesco Marulo of University of Naples Federico II for the interesting discussions about rotary-wing and aerospace engineering.

I would like to thank Dottor Enrico Gustapane and all my colleagues of Leonardo Helicopters Division in Frosinone plant.

Giovanni Di Giorgio
Roma, February 25, 2018
The book provides an introduction to helicopters through the fundamental theories and methods of rotor aerodynamics and flight mechanics. The arguments have been structured in order to provide the reader with the physical aspects of problems, the basic mathematical tools involved, the presentation of theories with solved numerical examples or ready to be implemented on the computer. Therefore, the understanding of both the rotary—wing principles of flight and the magnitude of parameters and variables involved is achieved through a clear and step by step practical presentation. The topics include rotor aerodynamics and elements of rotor dynamics, helicopter flight performance, helicopter stability and control. The text can be used as a reference for students in aerospace engineering, and, moreover, the material is useful for both practicing engineers and professionals in helicopter technology.

Giovanni Di Giorgio was born in Italy. He received the Laurea degree, MSc, in Aeronautical Engineering from the University of Naples Federico II, in 2000. In 2001 he joined AgustaWestland, now Leonardo Helicopters Division, where he is currently involved in a large number of significant production programs relating to light, medium and heavy helicopters (single and tandem rotor) and to a tilt rotor aircraft. His areas of interests include helicopter performance calculation and flight mission simulation by Artificial Intelligence methodologies, and flight safety. His extensive experience in rotary—wing technology, as aeronautical engineer and educator, includes sustaining and manufacturing engineering, special processes on rotors and flight controls, structures, transmission system. Dott. Ing. Di Giorgio is also a qualified professional Engineer, registered in Italy.